
1|Page Key: Major Clusters | Supporting | $\quad \underset{\sim}{\text { Additional Clusters }} \mid \quad$ Benchmarked

Fairfield Township School - $\mathbf{1}^{\text {st }}$ Grade Math Curriculum Guide

Unit 2 Add and Subtract within 20		MP. 4 Model with mathematics. MP. 5 Use appropriate tools strategically. MP. 6 Attend to precision.
Unit 2: Suggested Open Educational Resources	1.0A.A. 1 School Supplies 1.OA.D. 7 Valid Equalities? 1.OA.D. 8 Find the Missing Number 1.OA.B. 3 Doubles? 1.OA.C. $6 \$ 20$ Dot Map 1.0A.A. 2 Daisies in vases 1.NBT.B. 2 Roll \& Build 1.NBT.B. 3 Ordering Numbers 1.NBT.A. 1 Start/Stop Counting 2	MP. 7 Look for and make use of structure. MP. 8 Look for and express regularity in repeated reasoning.

2|Page Key: Major Clusters | Supporting | \quad Additional Clusters | Benchmarked

Fairfield Township School - $\mathbf{1}^{\text {st }}$ Grade Math Curriculum Guide

3|Page Key: Major Clusters | Supporting | Additional Clusters | * Benchmarked

Unit 4:	1.G.A. 1 All vs. Only some	
Suggested Open Educational Resources	1.G.A. 1 3-D Shape Sort	MP. 6 Attend to precision.
	1.G.A. 2 Make Your Own Puzzle	
	1.G.A. 2 Overlapping Rectangles	
	1.G.A. 3 Equal Shares	MP. 7 Look for and make use of structure.
	1.0A.A. 1 Twenty Tickets	
	1.NBT.A. 1 Where Do I Go?	
		MP. 8 Look for and express regularity in repeated reasoning.

21st Century Life and Careers Career Awareness, Exploration, and Preparation	9.2.4.A.1 Identify reasons why people work, different types of work, and how work can help a person achieve personal and professional goals. 9.2.4.A.2 Identify various life roles and civic and work-related activities in the school, home, and community.		
Career Ready Practices Standards	CRP2. Apply appropriate academic and technical skills. CRP4. Communicate clearly and effectively and with reason. CRP11. Use technology to enhance productivity.		
ELA Standards	RI.1.1. Ask and answer questions about key details in a text. RI.1.4. Ask and answer questions to help determine or clarify the meaning of words and phrases in a text.		
NJSLSA.W5. Develop and strengthen writing as needed by planning,			
revising, editing, rewriting, or trying a new approach.			
SL.1.3. Ask and answer questions about what a speaker says in order to			
gather additional information or clarify something that is not understood.		,	
:---			

4|Page Key: Major Clusters | Supporting | \quad Additional Clusters | Benchmarked

Technology Standards

8.1.2.A.4 Demonstrate developmentally appropriate navigation skills in virtual environments (i.e. games, museums).
8.1.2.C.1 Engage in a variety of developmentally appropriate learning activities with students in other classes, schools, or countries using various media formats such as online collaborative tools, and social media. 8.1.2.E.1 Use digital tools and online resources to explore a problem or issue.

Unit 1 Grade 1 - Add and subtract within 10

Content Standards

- 1.0A.A.1. Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.
*(benchmarked)
Suggested Mathematical Practices

MP. 1 Make sense of problems and
persevere in solving them.
MP. 2 Reason abstractly and
quantitatively.
MP. 3 Construct viable arguments and
critique the reasoning of others.
MP. 4 Model with mathematics.
MP. 5 Use appropriate tools
strategically.
MP. 8 Look for and express regularity in
repeated reasoning.

MP. 8 Look for and express regularity in repeated reasoning.

Transfer
 Concept(s)

- Symbol (unknowns) can be in any position.

Students are able to:

- add, using objects and drawings, to solve word problems involving situations of adding to and putting together.
- subtract, using objects and drawings, to solve world problems involving situations of taking from and taking apart.

Learning Goal 1: Use addition and subtraction within 10 to solve problems, including word problems involving situations of adding to, taking from, putting together, taking apart, and comparing with unknowns in all positions.

- 1.0A.B.3. Apply properties of operations as strategies to add and subtract. Examples: If $8+3=11$ is known, then $3+8=11$ is also known. (Commutative property of addition.) To add $2+6+4$, the second two numbers can be added to make a ten, so $2+6+4=2+10=$ 12. (Associative property of addition.) idents need not use formal terms for these properties) *(benchmarked)	MP. 2 Reason abstractly and quantitatively. MP. 7 Look for and make use of structure. MP. 8 Look for and express regularity in repeated reasoning.	Concept(s): - Knowing $4+3$ means that $3+4$ is also known (commutative property/fact families). - When adding , the numbers need not be added in any particular order. Students are able to: - add and subtract, within 10 , using properties of operations as strategies (commutative property). Learning Goal 2: Apply properties of operations (commutative property) as strategies to add or subtract within 10.
- 1.0A.B.4. Understand subtraction as an unknown-addend problem. example, subtract 10-8 by finding the number that makes 10 when added to 8	MP. 2 Reason abstractly and quantitatively. MP. 7 Look for and make use of structure. MP. 8 Look for and express regularity in repeated reasoning.	Concept(s): - Subtraction can be represented as an unknown-addend problem. - Finding 9 minus 3 means solving ? $+3=9$ or $3+?=9$ (fact families). Students are able to: - represent subtraction as an unknown addend problem. - solve subtraction problems, within 10, using unknown addends. Learning Goal 3: Solve subtraction problems, within 10, by representing subtraction as an unknown added problem and finding the unknown addend
- 1.0A.C.5. Relate counting to addition and subtraction (e.g., by counting 2 to add 2).	MP. 2 Reason abstractly and quantitatively. MP. 7 Look for and make use of structure.	Concept(s): - Counting can be used to add and subtract. Students are able to: - count on to add. - count back to subtract. Learning Goal 4: Count on to add and count backwards to subtract to solve addition and subtraction problems within 10.

6|Page Key: Major Clusters | Supporting | Additional Clusters | * Benchmarked

- 1.0A.D.7. Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false.
example, which of the following equations are true and which are false? $6=6,7=8-1,5+2=2+5,4$ $+1=5+2$.
- 1.0A.D.8. Determine the unknown whole number in an addition or subtraction equation relating three whole numbers.
example, determine the unknown number that makes the equation true in each of the equations $8+$? = 11, $5=$ _ $-3,6$ $+6=$. ${ }^{*}$ (benchmarked)

MP. 2 Reason abstractly and quantitatively.

MP. 3 Construct viable arguments and critique the reasoning of others.

MP. 6 Attend to precision.
MP. 7 Look for and make use of structure.

Concept(s):

- The meaning of the equal sign
- True and false statements
- The expression can be on the right side of the equal sign (e.g. $7=8-1$).
- Both the left and right side of the equal sign may contain expressions (e.g. $5+2=1+4$).

Students are able to:

- determine if addition equations are true or false.
- determine if subtraction equations are true or false.

Learning Goal 5: Determine if addition and subtraction equations, within 10, are true or false.

Concept(s): No new concept(s) introduced

Students are able to:

- determine the unknown number that makes an equation true
- solve addition or subtraction equations by finding the missing whole number.

Learning Goal 6: Solve addition and subtraction equations, within 10, by finding the missing whole number in any position.
7 Page Key: Major Clusters | \quad Supporting | \quad Additional Clusters | Benchmarked

- 1.NBT.A.1. Count to 120 , starting at any number less than 120. In this range, read and write numerals and represent a number of objects with a written numeral *(benchmarked)	MP. 2 Reason abstractly and quantitatively. MP. 7 Look for and make use of structure. MP. 8 Look for and express regularity in repeated reasoning.	Concept(s): - Number names and the count sequence up to 100 Students are able to: - count orally by ones up to 100 . - count up to 100 beginning at any number less than 100 . - read numerals up to 100 . - write numerals up to 100 . - represent a number of objects up to 100 with a written number. Learning Goal 7: Count to 100 orally, read and write numerals, and write numerals to represent the number of objects (up to 100).

District/School Formative Assessment Plan	District/School Summative Assessment Plan

8|Page Key: Major Clusters | Supporting | $\quad \underset{\sim}{\text { Additional Clusters } \mid}$. Benchmarked

- Teacher-Created Assessments
- Homework
- Classwork
- UDL's
- whiteboard activities
- IXL
- Problem of the Day
- Exit Ticket
- Chapter Tests
- Unit Tests
- EdConnect Assessments

Focus Mathematical Concepts

Vocabulary		Instruction and Pacing	
Addition, subtraction, number line, counting forward, counting backward, altogether, tens, ones, total, missing, true, false, equal sign, blank space	Pretest	Adding within 10	
	Subtracting within 10	1 week	
	Apply properties to add and subtract	1 week	
	Fact families	1 week	
	Counting on and counting back to add and subtract	1 week	
	Working with the equal sign	1 week	
	Equations relating 3 whole numbers	2 weeks	
	Count to 120	1 week	

ENDURING UNDERSTANDING

- Numbers are sequential
- Addition problems can be solved by counting forward
- Subtraction problems can be solved by counting backward
- Two-digit numbers represent amounts of tens and ones
- An equation must be equal on both sides
- The sequence of numbers remains the same regardless of where one begins? counting
- The number of objects displayed can be represented with a written numeral

ESSENTIAL QUESTIONS

- What is the relationship between addition and subtraction?
- What strategies can be used to add and subtract?
- How does understanding place value help you solve addition and subtraction problems?
- How can we represent and solve word problems involving addition and subtraction?
- How do we manipulate addition and subtraction equations?
- How can we extend the counting sequence?
9|Page Key: Major Clusters \| Supporting | Additional Clusters | * Benchmarked

Differentiation and Accommodations	District/School Primary and Supplementary Resources
- Provide graphic organizers - Provide additional examples and opportunities for additional problems for repetition - Provide tutoring opportunities - Provide retesting opportunities after remediation (up to teacher and district discretion) - Teach for mastery not test - Teaching concepts in different modalities - Adjust pace and homework assignments	- Go Math!! - IXL - Teacher created materials
Instructional Strategies	
Fairfield Township School recognizes the importance of the varying methodologi identifies a wide variety of possible instructional strategies that may be used effe strategies that fall into categories identified by the Framework for Teaching by C - Communicating with students - Using questioning and discussion techniques - Engaging students in learning - Using assessment in instruction - Demonstrating Flexibility and Responsiveness	may be successfully employed by teachers within the classroom and, as a result, to support student achievement. These may include, but not be limited to, Danielson:

- Students count objects incorrectly
- Students incorrectly write sums
- A number sentence should have words
- Number sentences written vertically are different
- Students make errors with addition sentences
- In subtraction, students move the wrong number of counters
- Students become confused with objects that are left and objects taken away
- Students confuse taking away zero with taking away all
- Students incorrectly write sums
- A number sentence should have words
- Number sentences written vertically are different
- Students make errors with addition sentences
- In subtraction, students move the wrong number of counters
- Students become confused with objects that are left and objects taken away
- Students have difficulty matching sets objects to see which has fewer
- How many more is a clue to add two sets of objects to have more
- There is only one way to write an addition or subtraction sentence
- The equal sign always has to be toward the end of a number sentence
- Practice Counting various groups of objects and/or mark objects counted
- Counting and checking the total in each group will give the correct sum
- Number sentences are written with numbers and signs
- A number sentence can be written several ways
- Counting and/or acting out the number story helps to check answers
- Counting objects and rechecking can make sure numbers are correct
- Cover the objects taken away to see what is left
- Cover objects taken away or act out taking away zero
- Counting and checking the total in each group will give the correct sum
- Number sentences are written with numbers and signs
- A number sentence can be written several ways
- Counting and/or acting out the number story helps to check answers
- Counting objects and rechecking can make sure numbers are correct
- Cover the objects taken away to see what is left
- Matching or drawing lines to sets of objects helps to compare sets
- How many more is a strategy to compare which group has more
- There are several ways to write addition and subtraction sentence
- An equal sign is used to show the same amount is on both sides of an equation
- You are in charge of getting the apples from the cafeteria for your class. There are 13 students in the class now. The teacher says that 4 more students will be arriving later. You must figure out how many apples to get from the cafeteria. Draw a picture that shows how many apples you need altogether. Write a number sentence to show how many are needed.
- The teacher has asked you to sharpen 18 pencils before lunch break. So far you have sharpened 12 pencils. How many pencils still need to be sharpened? Draw a picture to show how many are left to be sharpened. Write a number sentence to show how many pencils still need to be sharpened.

Rubric

3 point answer: Student is able to complete entire task correctly
2 point answer: Student is able to complete 2 of the $\mathbf{4}$ tasks correctly
1 point answer: Student is unable to complete 2 of the 4 tasks correctly
11|Page Key: Major Clusters | Supporting | $\quad \underset{\sim}{\text { Additional Clusters }}$ | Benchmarked

Fairfield Township School - $1^{\text {st }}$ Grade Math Curriculum Guide

Unit 2 Grade 1 - Add and subtract within 20

Content Standards	Suggested Standards for Mathematical Practice	Transfer
- 1.0A.A.1. Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem. *(benchmarked)	MP. 1 Make sense of problems and persevere in solving them. MP. 2 Reason abstractly and quantitatively. MP. 3 Construct viable arguments and critique the reasoning of others. MP. 4 Model with mathematics. MP. 5 Use appropriate tools strategically. MP. 8 Look for and express regularity in repeated reasoning.	Concept(s): - Symbols can be used to represent unknown numbers. - The symbol (unknowns) can be in any position. Students are able to: - add, using drawings and equations, to solve word problems involving situations of adding to and putting together. - subtract, using drawings and equations, to solve world problems involving situations of taking from and taking apart. Learning Goal 1: Use addition and subtraction within 20 to solve problems, including word problems involving situations of adding to, taking from, putting together, taking apart, and comparing with unknowns in all positions.

12|Page Key: Major Clusters | Supporting | Additional Clusters | *Benchmarked

- 1.0A.D.7. Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false. example, which of the following equations are true and which are false? $6=6,7=8-1,5+2=2+5,4$ $+1=5+2 . *($ benchmarked)	MP. 2 Reason abstractly and quantitatively. MP. 3 Construct viable arguments and critique the reasoning of others. MP. 6 Attend to precision. MP. 7 Look for and make use of structure.	Concept(s): No new concept(s) introduced Students are able to: - determine if addition equations are true or false - determine if subtraction equations are true or false Learning Goal 2: Determine if addition and subtraction equations, within 20, are true or false.
- 1.0A.D.8. Determine the unknown whole number in an addition or subtraction equation relating three whole numbers. example, determine the unknown number that makes the equation true in each of the equations $8+$? = $11,5=-3,6+6=$. *(benchmarked)	MP. 2 Reason abstractly and quantitatively. MP. 6 Attend to precision. MP. 7 Look for and make use of structure.	Concept(s): No new concept(s) introduced Students are able to: - determine the unknown number that makes an equation true. - solve addition or subtraction equations by finding the missing whole number. Learning Goal 3: Solve addition and subtraction equations, within 20, by finding the missing whole number in any position.
- 1.0A.B.3. Apply properties of operations as strategies to add and subtract. Examples: If $8+3=11$ is known, then $3+8=11$ is also known. (Commutative property of addition.) To add $2+6+4$, the second two numbers can be added to make a ten, so $2+6+4=2+10=$ 12. (Associative property of addition.) (Students need not use formal terms for these properties) *(benchmarked)	MP. 2 Reason abstractly and quantitatively. MP. 7 Look for and make use of structure. MP. 8 Look for and express regularity in repeated reasoning.	Concept(s): - When adding, the numbers need not be added in order. - To add $2+6+4$, the second two numbers can be added first to make a ten. [e.g., $2+6+4=2+10=12$ (Associative Property)] Students are able to: - add and subtract, within 20, using properties of operations as strategies. (Associative Property) Learning Goal 4: Apply properties of operations as strategies (Associative Property) to add or subtract within 20.

13|Page Key: Major Clusters | Supporting | Additional Clusters | * Benchmarked

- 1.OA.C.6. Add and subtract within 20, demonstrating fluency for addition and subtraction within 10. Use strategies such as counting on; making ten (e.g., $8+6=8+2+4=$ $10+4=14$); decomposing a number leading to a ten (e.g., 13-4 $=13-3-1=10-1=9$); using the relationship between addition and subtraction (e.g., knowing that $8+$ $4=12$, one knows $12-8=4$); and creating equivalent but easier or known sums (e.g., adding $6+7$ by creating the known equivalent $6+$ $6+1=12+1=13)$.
*(benchmarked)
MP. 2 Reason abstractly and
quantitatively.
MP. 7 Look for and make use of
structure.
MP. 8 Look for and express regularity in
repeated reasoning.

Concept(s):

- Different strategies can be used to add and subtract.

Students will be able to:

- add and subtract within 20, using the following strategies:
- counting on;
- making ten;
- composing numbers;
- decomposing numbers leading to a ten;
- relationship between addition and subtraction, and
- creating equivalent but easier or known sums.
- fluently add or subtract whole numbers within 20.

Learning Goal 5: Add and subtract whole numbers within 20 using various strategies: counting on, making ten, composing, decomposing, relationship between addition and subtraction, creating equivalent but easier or known sums, etc.

Concept(s):

- Symbols can be used to represent unknown numbers.
- The symbol (unknowns) can be in any position.

Students are able to:

- use objects and drawings to represent word problems that call for less than or equal to 20 .

Learning Goal 6: Solve addition word problems with three whole numbers with sums less than or equal to 20.
14|Page Key: Major Clusters | Supporting | $\quad \underset{\sim}{\text { Additional Clusters }} \mid \quad$ Benchmarked

- 1.MD.C.4. Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another.
- 1.NBT.B.2. Understand that the two digits of a two-digit number represent amounts of tens and ones. Understand the following as special cases:
1.NBT.B.2. a. 10 can be thought of as a bundle of ten ones - called a "ten."
1.NBT.B.2. b. The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones.

MP. 2 Reason abstractly and quantitatively.

MP. 3 Construct viable arguments and critique the reasoning of others.

MP. 4 Model with mathematics.
MP. 5 Use appropriate tools strategically.

MP. 6 Attend to precision.

MP. 2 Reason abstractly and quantitatively.

MP. 7 Look for and make use of structure.

MP. 8 Look for and express regularity in repeated reasoning.

Concept(s):

- Numbers can be organized to represent data.

Students are able to:

- organize objects, representing data, in up to three categories.
- represent data with objects, drawings, or numerals, in up to three categories.
- ask and answer questions about:
- the total number of data points;
- the number of data points in each category, and
- how many more or less are in one category than in another.

Learning Goal 7: Organize, represent, and interpret data with up to three categories, compare the number of data points among the categories, and find the total number of data points.

Concept(s):

- Two digits represent amounts of tens and ones.
- 10 can be thought of as a bundle of ten ones - called a ten.

Students are able to:

- compose numbers to 20.
- decompose numbers to 20 .
- identify the value of the number in the tens or ones place.

Learning Goal 8: Compose and decompose numbers to 20 to identify the value of the number in the tens and ones place.
15|Page Key: Major Clusters | Supporting | $\quad \underset{\sim}{\text { Additional Clusters }}$ | Benchmarked

- 1.NBT.B.3. Compare two two-digit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, $=$, and <.	MP. 2 Reason abstractly and quantitatively. MP. 6 Attend to precision. MP. 7 Look for and make use of structure. MP. 8 Look for and express regularity in repeated reasoning.	Concept(s): - Use place value understanding to compare two digit numbers. - Comparing numbers using symbols. Students are able to: - use the meaning of tens and ones digits to compare 2 two-digit numbers using $>,=$, and $<$ symbols. Learning Goal 9: Use the meaning of tens and ones digits to record comparisons of 2 twodigit numbers using $>$, $=$, and $<$ symbols.
- 1.NBT.A.1. Count to 120 , starting at any number less than 120 . In this range, read and write numerals and represent a number of objects with a written numeral *(benchmarked)	MP. 2 Reason abstractly and quantitatively. MP. 7 Look for and make use of structure. MP. 8 Look for and express regularity in repeated reasoning.	Concept(s): - Number names and the count sequence up to 120. Students are able to: - count orally by ones up to 120 . - count up to 120 beginning at any number less than 120 . - read numerals up to 120 . - write numerals up to 120 . - represent a number of objects up to 120 with a written number. Learning Goal 10: Count to 120 orally, read and write numerals, and write numerals to represent the number of objects (up to 120).

District/School Formative Assessment Plan	District/School Summative Assessment Plan

16|Page Key: Major Clusters | Supporting | $\quad \underset{\sim}{\text { Additional Clusters }} \mid \quad$ Benchmarked

Fairfield Township School - $1^{\text {st }}$ Grade Math Curriculum Guide

- Teacher-Created Assessments
- Chapter Tests
- Homework
- Unit Tests
- Classwork
- EdConnect Assessments
- UDL's
- whiteboard activities
- IXL
- Problem of the Day
- Exit Ticket

Focus Mathematical Concepts

17|Page Key: Major Clusters | Supporting | Additional Clusters | *Benchmarked

Vocabulary	Instruction and Pacing	
Addition, subtraction, number line, counting forward, counting backward, altogether, tens, ones, total, missing, true , false, equal sign, blank space, comparing	Pretest	1 day
	Adding within 20	1 week
	Subtracting within 20	1 week
	Review equal sign problems (now within 20)	1 week
	Equations relating 3 whole numbers	2 weeks
	Tens and ones	1 week
	Comparing 2-digit numbers	2 weeks
	Counting to 120	1 week
	Count to 120	1 week

Enduring Understanding	Essential Questions
- Numbers are sequential - Addition problems can be solved by counting forward - Subtraction problems can be solved by counting backward - Two-digit numbers represent amounts of tens and ones - An equation must be equal on both sides - The sequence of numbers remains the same regardless of where	- What is the relationship between addition and subtraction? - What strategies can be used to add and subtract? - How does understanding place value help you solve addition and subtraction problems? - How can we represent and solve word problems involving addition and subtraction? - How do we manipulate addition and subtraction equations?

18|Page Key: Major Clusters | Supporting | Additional Clusters | * Benchmarked

Fairfield Township School - $1^{\text {st }}$ Grade Math Curriculum Guide

- The number of objects displayed can be represented with a written numeral	- How can we extend the counting sequence?
Differentiation and Accommodations	District/School Primary and Supplementary Resources
- Provide graphic organizers - Provide additional examples and opportunities for additional problems for repetition - Provide tutoring opportunities - Provide retesting opportunities after remediation (up to teacher and district discretion) - Teach for mastery not test - Teaching concepts in different modalities - Adjust pace and homework assignments	- Go Math!! - IXL - Teacher created materials
Instructional Strategies	

19|Page Key: Major Clusters | Supporting | Additional Clusters | * Benchmarked

Fairfield Township School - $1^{\text {st }}$ Grade Math Curriculum Guide

Fairfield Township School recognizes the importance of the varying methodologies that may be successfully employed by teachers within the classroom and, as a result, identifies a wide variety of possible instructional strategies that may be used effectively to support student achievement. These may include, but not be limited to, strategies that fall into categories identified by the Framework for Teaching by Charlotte Danielson:

- Communicating with students
- Using questioning and discussion techniques
- Engaging students in learning
- Using assessment in instruction
- Demonstrating Flexibility and Responsiveness

Common Misconceptions

Proper Conceptions
20|Page Key: Major Clusters | Supporting | Additional Clusters | *Benchmarked

- Students count objects incorrectly
- Students incorrectly write sums
- A number sentence should have words
- Number sentences written vertically are different
- Students make errors with addition sentences
- In subtraction, students move the wrong number of counters
- Students become confused with objects that are left and objects taken away
- Students confuse taking away zero with taking away all
- Students incorrectly write sums
- A number sentence should have words
- Number sentences written vertically are different
- Students make errors with addition sentences
- In subtraction, students move the wrong number of counters
- Students become confused with objects that are left and objects taken away
- Students have difficulty matching sets objects to see which has fewer
- How many more is a clue to add two sets of objects to have more
- There is only one way to write an addition or subtraction sentence
- The equal sign always has to be toward the end of a number sentence
- Practice Counting various groups of objects and/or mark objects counted
- Counting and checking the total in each group will give the correct sum
- Number sentences are written with numbers and signs
- A number sentence can be written several ways
- Counting and/or acting out the number story helps to check answers
- Counting objects and rechecking can make sure numbers are correct
- Cover the objects taken away to see what is left
- Cover objects taken away or act out taking away zero
- Counting and checking the total in each group will give the correct sum
- Number sentences are written with numbers and signs
- A number sentence can be written several ways
- Counting and/or acting out the number story helps to check answers
- Counting objects and rechecking can make sure numbers are correct
- Cover the objects taken away to see what is left
- Matching or drawing lines to sets of objects helps to compare sets
- How many more is a strategy to compare which group has more
- There are several ways to write addition and subtraction sentence
- An equal sign is used to show the same amount is on both sides of an equation
21 Page \quad Key: \quad Major Clusters | \quad Supporting | $\quad \underset{\sim}{\text { Additional Clusters } \quad \mid \quad \text { Benchmarked }}$

Fairfield Township School - $\mathbf{1}^{\text {st }}$ Grade Math Curriculum Guide

You have been selected to be the teacher for a day. Show how you would teach the class how to solve the following problems. Include pictures and a number sentence for each. Solve the number sentences.

Bob has 5 toy cars. Jim has 8 toy cars. How many toy cars do Bob and Jim have altogether?

Jane came to school with 12 cookies. She gave 7 cookies to her friends. How many cookies does Jane have left?

The farm had 2 horses, 5 cows, and 4 pigs. How many animals are at the farm altogether?
Mary had some pencils. She gave 8 of her pencils to Bill and the other 7 pencils to Sue. How many pencils did she have at first?

Rubric

3 point answer At least three problems are correct
2 point answer At least one part of two problems is correct
1 point answer Fewer of one part of two problems is correct

22 | Page
Key: Major Clusters |

Fairfield Township School - $1^{\text {st }}$ Grade Math Curriculum Guide

Unit 3 Grade 1		
Content Standards	Suggested Standards for Mathematical Practice	Critical Knowledge \& Skills
- 1.NBT.B.2. Understand that the two digits of a two-digit number represent amounts of tens and ones. Understand the following as special cases: 1.NBT.B.2.c. The numbers 10 , $20,30,40,50,60,70,80,90$ refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones). *(benchmarked)	MP. 2 Reason abstractly and quantitatively. MP. 7 Look for and make use of structure. MP. 8 Look for and express regularity in repeated reasoning.	Concept(s): - Two digits represent amounts of tens and ones. - The numbers $10,20,30,40,50,60,70,80,90$ refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones). Students are able to: - compose tens to make numbers up to 90. - decompose numbers up to 90 , into tens. - identify the value of the number in the tens or ones place. Learning Goal 1: Compose and decompose numbers to 90 into tens, identifying the value of the number in the tens and ones place.

23|Page Key: Major Clusters | Supporting | \quad Additional Clusters $\mid \quad *$ Benchmarked

- 1.NBT.C.4. Add within 100, including adding a two-digit number and a one-digit number, and adding a two-digit number and a multiple of 10 , using concrete models (e.g. base ten blocks) or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding twodigit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten. *(benchmarked)
- 1.NBT.C.5. Given a two-digit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used.

MP. 2 Reason abstractly and quantitatively.

MP. 3 Construct viable arguments and critique the reasoning of others.

MP. 4 Model with mathematics.
MP. 7 Look for and make use of structure.
MP. 8 Look for and express regularity in repeated reasoning.

Concept(s):

- In adding two-digit numbers, add tens with tens and ones with ones.
- In adding two-digit numbers, sometimes it is necessary to compose a ten.

Students are able to:

- use concrete models and drawings with a strategy based on place value to add a two-digit number and a one-digit number.
- use concrete models and drawings with properties of operations to add a twodigit number and a one-digit number.
- use concrete models and drawings with a strategy based on place value to add a two-digit number and a multiple of 10 .
- use concrete models and drawings with properties of operations to add a twodigit number and a multiple of 10 .
- explain or show how the model relates to the strategy.

Learning Goal 2: Add a 2-digit and a 1-digit number using concrete models and drawings with a place value strategy or properties of operations; explain or show how the model relates to the strategy (sums within 100).

Learning Goal 3: Add a 2-digit number and a multiple of 10, using concrete models and drawings with a place value strategy or properties of operations.
Explain or show how the model relates to the strategy (sums within 100).

MP. 2 Reason abstractly and

 quantitatively.MP. 3 Construct viable arguments and critique the reasoning of others.

MP. 7 Look for and make use of structure.

Concept(s): No new concept(s) introduced
Students are able to:

- given a two-digit number, find 10 more than the number without counting.
- given a two-digit number, find 10 less than the number without counting.
- explain, given a two-digit number, how to find 10 more or ten less than the number without counting.

Learning Goal 4: Explain, given a two-digit number, how to find 10 more or ten less than the number without having to count.
$24 \mid$ Page Key: Major Clusters | Supporting | Additional Clusters | * Benchmarked

- 1.NBT.C.6. Subtract multiples of 10 in the range $10-90$ from multiples of 10 in the range 10-90 (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

MP. 2 Reason abstractly and quantitatively.

MP. 3 Construct viable arguments and critique the reasoning of others.

MP. 4 Model with mathematics.
MP. 5 Use appropriate tools strategically

MP. 7 Look for and make use of structure.

Concept(s): No new concept(s) introduced
Students are able to:

- use concrete models and drawings with a strategy based on place value to subtract a multiple of 10 from a multiple of 10 (both within the range 10-90).
- use concrete models and drawings with properties of operations to subtract a multiple of 10 from a multiple of 10 (both within the range 10-90).
- explain or show how the model relates to the strategy.

Learning Goal 5: Subtract a multiple of 10 from a multiple of 10 (both within the range 10-90) using concrete models and drawings with a place value strategy or properties of operations. Explain or show how the model relates to the strategy (sums within 100).

Concept(s):

- Objects can be compared and ordered based on length.

Students will be able to:

- compare the length of two objects.
- compare the length of two objects by using a third object as a measuring tool.
- order three objects by length.

Learning Goal 6: Order three objects by length and compare the lengths of two objects by using the third object (e.g., if the crayon is shorter than the marker and the marker is shorter than the pencil then the crayon is shorter than the pencil).
25 Page Key: Major Clusters | Supporting | $\quad \underset{\sim}{\text { Additional Clusters } \mid \quad \text { Benchmarked }}$

\bullet 1.MD.A.2. Express the length of an	MP. 6 Attend to precision.	Concept(s):

object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps.
it to contexts where the object being measured is spanned by a whole number of length units with no gaps or overlaps.

- 1.MD.B.3. Tell and write time in hours and half-hours using analog and digital clocks

MP. 7 Look for and make use of structure.

- The length measurement of an object is the number of same-size length units that span it with no gaps or overlaps.
Students will be able to:
- lay multiple copies of a shorter object (the length unit) end to end.
- use a shorter object to express the length of a longer object.

Learning Goal 7: Order three objects by length and compare the lengths of two objects by using the third object (e.g., if the crayon is shorter than the marker and the marker is shorter than the pencil then the crayon is shorter than the pencil).

Concept(s):

- Time is represented on analog and on digital clocks.
- Analog clocks have hands that indicate the time in hours and minutes.

Students are able to:

- tell and write time in hours using analog and digital clocks.
- tell and write time in half-hours using analog and digital clocks.
- use the term o'clock in reporting time to the hour.

Learning Goal 8: Tell and write time to the half-hour using the term o'clock and using digital notation (include both analog and digital clocks).

Fairfield Township School - $\mathbf{1}^{\text {st }}$ Grade Math Curriculum Guide

- 1.0A.C.6. Add and subtract within 20 , demonstrating fluency for addition and subtraction within 10. Use strategies such as counting on; making ten (e.g., $8+$ $6=8+2+4=10+4=14$); decomposing a number leading to a ten (e.g., 13-4 = 13-3-1 = 10 $1=9$); using the relationship between addition and subtraction (e.g., knowing that $8+4=12$, one knows 12-8=4); and creating equivalent but easier or known sums (e.g., adding $6+7$ by creating the known equivalent $6+$ $6+1=12+1=13$).
*(benchmarked)

MP. 2 Reason abstractly and quantitatively.

MP. 7 Look for and make use of structure.
MP. 8 Look for and express regularity in repeated reasoning.

Concept(s):

- Different strategies can be used to add and subtract.

Students will be able to:

- add and subtract within 20, using the following strategies:
- counting on;
- making ten;
- composing numbers;
- decomposing numbers;
- relationship between addition and subtraction, and
- creating equivalent but easier or known sums.
- fluently add or subtract whole numbers within 20.

Learning Goal 9: Add and subtract whole numbers within 20 using various strategies: counting on, making ten, composing, decomposing, relationship between addition and subtraction, creating equivalent but easier or known sums, etc
27|Page Key: Major Clusters | Supporting | Additional Clusters | * Benchmarked

Fairfield Township School - ${ }^{\text {st }}$ Grade Math Curriculum Guide

- Teacher-Created Assessments
- Chapter Tests
- Homework
- Unit Tests
- Classwork
- EdConnect Assessments
- UDL's
- whiteboard activities
- IXL
- Problem of the Day
- Exit Ticket

Focus Mathematical Concepts

28|Page Key: Major Clusters | Supporting | Additional Clusters | *Benchmarked

Vocabulary	Instruction and Pacing			
Tens ones digit break -apart decompose pattern Greater than less than equal to sum skip count Hundred chart mental math basic facts difference More than multiples ordering comparing length Time hours half-hours o'clock	Pretest	1 day		
	Tens and ones up to 90	1 week		
	Add within 100	1 week		
	10 more or 10 less than a given number	1 week		
	Subtract multiples of 10	2 weeks		
	Ordering and comparing lengths of objects	1 week		
	Lengths of objects	1 week		
	Time	1 week		
	Add and subtract within 20	1 week		
Enduring Understanding	Essential Questions			
- Sets can be perceived as single entities. - The decade numbers to 100 can be separated into sets of ten. - Numbers can be used to tell how many. - Numbers greater than 10 can be represented as the sum of tens and ones. - Place value can be used to compare and order numbers. - When adding and subtracting ten to a 2 digit number only the ten changes. - Traditional algorithm when adding and subtracting a 2 digit number by a 2 digit number stars with the ones.two digits of	- How does grouping by ten help us understand place value? - How can we use tens and ones to add and subtract two digit number?			
29\|Page Key: Major Clusters	Supporting		Additional Clusters \| * Benchmarked	

a two digit number represent amounts of tens and ones	
Differentiation and Accommodations	District/School Primary and Supplementary Resources
- Provide graphic organizers - Provide additional examples and opportunities for additional problems for repetition - Provide tutoring opportunities - Provide retesting opportunities after remediation (up to teacher and district discretion) - Teach for mastery not test - Teaching concepts in different modalities - Adjust pace and homework assignments	- Go Math!! - IXL - Teacher created materials

Instructional Strategies

Fairfield Township School recognizes the importance of the varying methodologies that may be successfully employed by teachers within the classroom and, as a result, identifies a wide variety of possible instructional strategies that may be used effectively to support student achievement. These may include, but not be limited to, strategies that fall into categories identified by the Framework for Teaching by Charlotte Danielson:

- Communicating with students
- Using questioning and discussion techniques
- Engaging students in learning
- Using assessment in instruction
- Demonstrating Flexibility and Responsiveness

Common Misconceptions	Proper Conceptions

30|Page Key: Major Clusters | Supporting | Additional Clusters | * Benchmarked

- Students have difficulty seeing ten objects as one group of ten
- Students miscount on a Hundreds Chart
- Students miscount when counting larger numbers for grouping in tens
- When estimating - the larger the manipulative the larger the quantity
- Students write the number of tens instead of the value (4 instead of 40)
- Students incorrectly regroup tens and ones
- Students add in the tens column before the ones column
- Students use the number in the ones column to compare greater or less
- Students mix up the greater and less than signs
- Students have difficulty understanding how long or short an activity may take
- Students have difficulty with intervals (5 min) on a clock and 60 minutes as a total
- Students confuse the hour and minute hand
- Students incorrectly write the time
- Students are not sure when to regroup
- Students are not sure how to record the new numbers once they regroup
- Students add or subtract in the tens column first
- Dependency on clue words in story problems
- Stydents lose count orcannot track when measuring
- Students become confused when the measurement falls between two numbers
- Our number system organizes numbers in groups of ten
- Always point and say each number when using a Hundreds Chart
- Mark or separate objects being counted when working with larger numbers
- Consider the size of objects being counted or use a benchmark/anchor to compare
- Practice saying and writing 4 tens is 40 or 7 tens is 70
- Models/Drawings of tens and ones can show us how to regroup
- Steps for add/sub help us to add and subtract correctly
- Always use the largest place value when comparing numbers
- Emphasize the first number is either greater $>$ or less $<$ than the second
- Act out activities that take short amounts of time (tying a shoe, writing their name)
- Time is grouped and measured in a different ways
- The hands on a clock move differently and have different functions
- Time is recorded by hour : minute
- Using place value blocks and cubes can help us to see when to regroup
- Connecting place value blocks and cubes show the connection to the written number
- Steps to adding and subtracting 2 and 3 digit numbers start in the ones column
- Visualizing or acting out or drawing and reading to a partner can to "see" the problem.

- Use the number that is closer to the "end" of the object

Fairfield Township School - ${ }^{\text {st }}$ Grade Math Curriculum Guide

Performance Task

Suggested 100 Day Project

Read Aloud: Set, 100th Day, Go.

Students will
Create a poster of $\mathbf{1 0 0}$ items organized in groups of ten.
Students will present their 100 Day Projects to the class.

Use hundred poster to develop comparison problems.

Use 100 posters to develop a word problem book with addition and subtractions of a 2-digit and 1-digit numbers, and a 2-digit number and a multiple of ten.

Students record a number sentence and solve the problem.

Rubric

- 3 point response: The student correctly groups 100 items by ten. Develops a correct comparison problem, creates an addition and subtraction problem and includes a number sentence and solves problem correctly.
* 2 point response: The student correctly groups 100 items by ten. Develops a correct comparison problem, creates an addition and subtraction problem and includes a number sentence and solves problem incorrectly.
* 1 point response: Able to groups items by 100. Unable to make a comparison. Creates an addition and subtraction problem but does not include a number sentence and solves problem incorrectly.

0 point response: No understanding of place value and is unable to complete the task.
33|Page Key: Major Clusters | Supporting | $\quad \underset{\sim}{\text { Additional Clusters }}$ | Benchmarked

Fairfield Township School - $1^{\text {st }}$ Grade Math Curriculum Guide

Unit 4 Grade 1		
Content Standards	Suggested Standards for Mathematical Practice	Critical Knowledge \& Skills
1.G.A.1. Distinguish between defining attributes (e.g., triangles are closed and three- sided) versus non-defining attributes (e.g., color, orientation, overall size); build and draw shapes to possess defining attributes.	MP.3 Construct viable arguments and critique the reasoning of others.	MP.4 Model with mathematics. MP.7 Look for and make use of
structure.	Students are able to:	
•Defining attributes versus non defining attributes. name attributes that define two-dimensional shapes (square, triangle, rectangle, regular hexagon). name attributes that do not two-dimensional shapes. build and draw shapes when given defining attributes.		

34 Page Key: Major Clusters | \quad Supporting | \quad Additional Clusters $\mid \quad$ Benchmarked

- 1.G.A.2. Compose twodimensional shapes (rectangles, squares, trapezoids, triangles, halfcircles, and quarter-circles) or three-dimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape, and compose new shapes from the composite shape.

MP. 4 Model with mathematics.
MP. 7 Look for and make use of structure.

Concept(s):

- Shapes can be composed from other shapes (e.g. trapezoids can be composed from triangles).
- New shapes can be composed from composite shapes.

Students are able to:

- create a composite shape using two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles).
- create a composite shape using three-dimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders).
- compose new shapes from the composite shapes.

Learning Goal 3: Create a composite shape by composing two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles and quarter circles) or three-dimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders), and compose new shapes from the composite shape.

- 1.G.A.3. Partition circles and rectangles into two and four equal shares, describe the shares using the words halves, fourths, and quarters, and use the phrases half of, fourth of, and quarter of. Describe the whole as two of, or four of the shares. Understand for these examples that decomposing into more equal shares creates smaller shares

MP. 2 Reason abstractly and quantitatively.

MP. 3 Construct viable arguments and critique the reasoning of others.

MP. 6 Attend to precision.
MP. 4 Model with mathematics.
MP. 7 Look for and make use of structure.

Concept(s):

- Shapes can be partitioned into equal parts or shares.
- Equal shares are named based on the number of shares that make the whole (e.g. halves, fourths, quarters).
- Shares can be described based on their relation to the whole (e.g half of, fourth of, quarter of).
- The whole can be described based on the number of shares.
- Decomposing a whole into more equal shares creates smaller shares.

Students are able to:

- partition circles and rectangles into two or four equal shares.
- distinguish equal shares from those that are not equal.
- describe shares using the words halves, fourths, and quarters.
- describe the relationship between the whole and the share using the phrases half of, fourth of, and quarter of.
- describe the whole as two of, or four of the shares.
- decompose a whole into a greater number of equal shares and identify the new shares as smaller.

Learning Goal 4: Partition circles and rectangles into two or four equal shares, describing the shares using halves, fourths, and quarters and use the phrases half of, fourth of, and quarter of. Describe the whole circle (or rectangle) partitioned into two or four equal shares as two of, or four of the shares.

- 1.OA.A.1. Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem. *(benchmarked)
- 1.0A.C.6. Add and subtract within 20 , demonstrating fluency for addition and subtraction within 10 . Use strategies such as counting on; making ten (e.g., $8+6=8+2+$ $4=10+4=14$); decomposing a number leading to a ten (e.g., $13-4=13-3-1=10-1=$ 9); using the relationship between addition and subtraction (e.g., knowing that $8+4=12$, one knows $12-8=$ 4); and creating equivalent but easier or known sums (e.g., adding $6+7$ by creating the known equivalent $6+6+1=$ $12+1=13$) *(benchmarked)

MP. 1 Make sense of problems and persevere in solving them.

MP. 2 Reason abstractly and quantitatively.

MP. 3 Construct viable arguments and critique the reasoning of others.

MP. 4 Model with mathematics.
MP. 5 Use appropriate tools strategically.
MP. 8 Look for and express regularity in repeated reasoning.

MP. 2 Reason abstractly and quantitatively.

MP. 7 Look for and make use of structure.
MP. 8 Look for and express regularity in repeated reasoning.

Concept(s):

- Symbols can be used to represent unknown numbers.
- The symbol (unknowns) can be in any position.

Students are able to:

- add, using objects and drawings, to solve word problems involving situations of adding to and putting together.
- subtract, using objects and drawings, to solve world problems involving situations of taking from and taking apart.

Learning Goal 5: Use addition and subtraction within 20 to solve problems, including word problems involving situations of adding to, taking from, putting together, taking apart, and comparing with unknowns in all positions.

Concept(s):

- Different strategies can be used to add and subtract.

Students will be able to:

- add and subtract within 20, using the following strategies:
- counting on;
- making ten;
- composing numbers;
- decomposing numbers;
- relationship between addition and subtraction, and
- creating equivalent but easier or known sums.
- fluently add or subtract whole numbers within 20.

Learning Goal 6: Add and subtract whole numbers within 20 using various strategies: counting on, making ten, composing, decomposing, relationship between addition and subtraction, creating equivalent but easier or known sums, etc.
37|Page \quad Key: Major Clusters | Supporting | $\quad \underset{\sim}{\text { Additional Clusters }}$ | \quad Benchmarked

Fairfield Township School - ${ }^{\text {st }}$ Grade Math Curriculum Guide

- 1.NBT.A.1. Count to 120 , starting at any number less than 120. In this range, read and write numerals and represent a number of objects with a written numeral. *(benchmarked)

MP. 2 Reason abstractly and quantitatively.

MP. 7 Look for and make use of structure.

MP. 8 Look for and express regularity in repeated reasoning.

Concept(s):

- Number names and the count sequence up to 120 .

Students are able to:

- count orally by ones up to 120 .
- count up to 120 beginning at any number less than 120 .
- read numerals up to 120 .
- write numerals up to 120 .
- represent a number of objects up to 120 with a written number.

Learning Goal 7: Count to 120 orally, read and write numerals, and write numerals to represent the number of objects (up to 120).
38 Page Key: Major Clusters | \quad Supporting | Additional Clusters | Benchmarked

- 1.NBT.C.4. Add within 100, including adding a two-digit number and a one-digit number, and adding a twodigit number and a multiple of 10 , using concrete models (e.g. base ten blocks) or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten. *(benchmarked)

MP. 2 Reason abstractly and quantitatively.

MP. 3 Construct viable arguments and critique the reasoning of others.

MP. 4 Model with mathematics.
MP. 7 Look for and make use of structure.
MP. 8 Look for and express regularity in repeated reasoning.

Concept(s):

- In adding two-digit numbers, add tens with tens and ones with ones.
- In adding two-digit numbers, sometimes it is necessary to compose a ten.

Students are able to:

- use concrete models and drawings with a strategy based on place value to add a two-digit number and a one-digit number.
- use concrete models and drawings with properties of operations to add a twodigit number and a one-digit number.
- use concrete models and drawings with a strategy based on place value to add a two-digit number and a multiple of 10 .
- use concrete models and drawings with properties of operations to add a twodigit number and a multiple of 10 .
- explain or show how the model relates to the strategy.

Learning Goal 8: Add a 2-digit and a 1-digit number using concrete models and drawings with a place value strategy or properties of operations; explain or show how the model relates to the strategy (sums within 100).

Learning Goal 9: Add a 2-digit number and a multiple of 10, using concrete models and drawings with a place value strategy or properties of operations.
Explain or show how the model relates to the strategy (sums within 100).

District/School Formative Assessment Plan

District/School Summative Assessment Plan

39|Page Key: Major Clusters | Supporting | Additional Clusters | * Benchmarked

Fairfield Township School - $\mathbf{1}^{\text {st }}$ Grade Math Curriculum Guide

- Teacher-Created Assessments
- Chapter Tests
- Homework
- Unit Tests
- Classwork
- EdConnect Assessments
- UDL's
- whiteboard activities
- IXL
- Problem of the Day
- Exit Ticket

Focus Mathematical Concepts
40|Page Key: Major Clusters | Supporting | Additional Clusters | *Benchmarked

41|Page Key: Major Clusters | Supporting | Additional Clusters | * Benchmarked

- Provide graphic organizers
- Provide additional examples and opportunities for additional problems for repetition
- Provide tutoring opportunities
- Provide retesting opportunities after remediation (up to teacher and district discretion)
- Teach for mastery not test
- Teaching concepts in different modalities
- Adjust pace and homework assignments

Instructional Strategies

Fairfield Township School recognizes the importance of the varying methodologies that may be successfully employed by teachers within the classroom and, as a result, identifies a wide variety of possible instructional strategies that may be used effectively to support student achievement. These may include, but not be limited to, strategies that fall into categories identified by the Framework for Teaching by Charlotte Danielson:

- Communicating with students
- Using questioning and discussion techniques
- Engaging students in learning
- Using assessment in instruction
- Demonstrating Flexibility and Responsiveness

Common Misconceptions

42|Page Key: Major Clusters | Supporting | $\quad \underset{\sim}{\text { Additional Clusters }}$ \| Benchmarked

Fairfield Township School - $1^{\text {st }}$ Grade Math Curriculum Guide

- Students have difficulty visualizing all sides of solid
- A sphere has one flat surface
- Different shaped rectangles are altogether different shapes
- Students lose track when counting sides
- Students have difficulty dividing shapes into equal parts
- All halves and fourths are the same size
- Students have difficulty remembering all of the names of solid/plane shapes

Using objects the everyday world can help us see attributes of solid figures
A Sphere has one curved surface
Shapes can be different sizes but the same shape
Mark or track the sides of objects when counting sides
Divide shapes in half first, then see if it can be divided again equally.
A half is equal to two equal parts and fourths are four equal parts divided
Shapes have a mathematical name to distinguish their attributes

Performance Task

Using the 2 shapes below, divide one into halves and the other into quarters. Label each part with the correct term: one-half or one-fourth.

43|Page Key: Major Clusters | Supporting | \quad Additional Clusters | Benchmarked

