Overview	Standards for Mathematical Content	Unit Focus	Standards for Mathematical Practice (MP)	
Unit 1 Operations on Expressions	\bullet 7.NS.A. 1 \bullet 7.NS.A. 2 \bullet 7.NS.A. 3 \bullet 7.EE.A. 1 \bullet 7.EE.A. 2	- Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers - Use properties of operations to generate equivalent expressions	MP. 1 Make sense of problems and persevere in solving them.	
Unit 1: Suggested Open Educational Resources	7.NS.A. 1 Comparing Freezing Points 7.NS.A.1b-c Differences of Integers 7.NS.A. 2 Why is a Negative Times a Negative Always Positive 7.NS.A.2d Equivalent fractions approach to non-repeating decimals 7.NS.A.2d Repeating decimal as approximation 7.EE.A. 1 Writing Expressions 7.EE.A. 2 Ticket to Ride		them. MP. 2 Reason abstractly and quantitatively. MP. 3 Construct viable arguments \& critique the reasoning of others. MP. 4 Model with mathematics.	
Unit 2 Equations and Ratio \& Proportion		- Solve real-life and mathematical problems using numerical and algebraic expressions and equations - Analyze proportional relationships and use them to solve real-world and mathematical problems - Draw, construct, and describe geometrical figures and describe the relationships between them	MP. 5 Use appropriate tools strategically. MP. 6 Attend to precision.	
Unit 2: Suggested Open Educational Resources	7.EE.B. 3 Discounted Books 7.EE.B. 3 Shrinking 7.EE.B. 4 Fishing Adventures 2 7.EE.B.4, 7.NS.A. 1 Bookstore Account 7.EE.B.4b Sports Equipment Set 7.RP.A. 1 Cooking with the Whole Cup 7.RP.A. 2 Sore Throats, Variation 1 7.RP.A. 2 Buying Coffee 7.RP.A.2c Gym Membership Plans 7.G.A. 1 Floor Plan 7.G.A. 1 Map distance		MP. 7 Look for and make use of structure. MP. 8 Look for and express regularity in repeated reasoning.	
1\|Page	Key: Major Clus	\| Supporting	Additional Clusters	* Benchmarked Standard

2|Page Key: Major Clusters | Supporting | Additional Clusters | * Benchmarked Standard

21st Century Life and Careers Career Awareness, Exploration, and Preparation	9.2.12.C. 1 Review career goals and determine steps necessary for attainment. 9.2.12.C.2 Modify Personalized Student Learning Plans to support declared career goals 9.2.12.C. 3 Identify transferable career skills and design alternate career plans. 9.2.12.C.6 Investigate entrepreneurship opportunities as options for career planning and identify the knowledge, skills, abilities, and resources required for owning and managing a business. 9.2.12.C. 9 Analyze the correlation between personal and financial behavior and employability.
CRP Standards	CRP1. Act as a responsible and contributing citizen and employee. CRP2. Apply appropriate academic and technical skills. CRP7. Employ valid and reliable research strategies. CRP8. Utilize critical thinking to make sense of problems and persevere in solving them. CRP10. Plan education and career paths aligned to personal goals. CRP11. Use technology to enhance productivity. CRP12. Work productively in teams while using cultural global competence
ELA Standards	RI.7.1. Cite several pieces of textual evidence and make relevant connections to support analysis of what the text says explicitly as well as inferences drawn from the text. RI.7.4. Determine the meaning of words and phrases as they are used in a text, including figurative, connotative, and technical meanings; analyze the impact of a specific word choice on meaning and tone. W.7.4. Produce clear and coherent writing in which the development, organization, voice and style are appropriate to task, purpose, and audience. SL.7.4. Present claims and findings, emphasizing salient points in a focused, coherent manner with pertinent descriptions, facts, details, and examples; use appropriate eye contact, adequate volume, and clear pronunciation.
Technology Standards	8.1.8.A. 3 Use and/or develop a simulation that provides an environment to solve a real world problem or theory 8.1.8.C. 1 Collaborate to develop and publish work that provides perspectives on a global problem for discussions with learners from other countries. 8.1.8.D. 5 Understand appropriate uses for social media and the negative consequences of misuse. 8.1.8.E. 1 Effectively use a variety of search tools and filters in professional public databases to find information to solve a real world problem. 8.1.8.F.1 Explore a local issue, by using digital tools to collect and analyze data to identify a solution and make an informed decision.

3|Page Key: Major Clusters | Supporting | Additional Clusters | * Benchmarked Standard

Unit 1 Grade 7 - Rational Numbers and Algebraic Expressions		
Content Standards	Suggested Standards for Mathematical Practice	Transfer
- 7.NS.A.1. Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line. 7.NS.A.1a. Describe situations in which opposite quantities combine to make 0. For example, In the first round of a game, Maria scored 20 points. In the second round of the same game, she lost 20 points. What is her score at the end of the second round? 7.NS.A.1b. Understand $p+q$ as the number located a distance $\|q\|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing realworld contexts. 7.NS.A.1c. Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-$ q). Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world	MP. 2 Reason abstractly and quantitatively. MP. 3 Construct viable arguments \& critique the reasoning of others. MP. 5 Use appropriate tools strategically. MP. 7 Look for and make use of structure.	Concept(s): - Opposite quantities combine to make 0 (additive inverses). - $\quad p+q$ is the number located a distance $\|q\|$ from p, in the positive or negative direction depending on whether q is positive or negative. - Subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$ - The product of two whole numbers is the total number of objects in a number of equal groups. Students are able to: - represent addition and subtraction on a horizontal number line. - represent addition and subtraction on a vertical number line. - interpret sums of rational numbers in real-world situations. - show that the distance between two rational numbers on the number line is the absolute value of their difference. Learning Goal 1: Describe real-world situations in which (positive and negative) rational numbers are combined, emphasizing rational numbers that combine to make 0 . Represent sums of rational numbers $(p+q)$ on horizontal and vertical number lines, showing that the distance along the number line is $\|q\|$ and including situations in which q is negative and positive. Learning Goal 2: Add and subtract (positive and negative) rational numbers, showing that the distance between two points on a number line is the absolute value of their difference and representing subtraction using an additive inverse.
4\|Page Key:	Major Clusters \| Supporting	Additional Clusters । * Benchmarked Standard

contexts. 7.NS.A.1d. Apply properties of operations as strategies to add and subtract rational numbers.			
- 7.NS.A.2. Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers. 7.NS.A.2a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)=1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts. 7.NS.A.2b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $(p / q)=(-p) / q=p /(-q) .2 c$. Interpret quotients of rational numbers by describing real world contexts. 7.NS.A.2d. Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0 s or eventually repeats.	MP. 2 Reason abstractly and quantitatively. MP. 4 Model with mathematics. pok for and make use of structure.	Concept(s): - Every quotient of integers (with non-zero divisor) is a rational number. - Decimal form of a rational number terminates in Os or eventually repeats. - Integers can be divided, provided that the divisor is not zero. - If p and q are integers, then $-(p / q)=(-p) / q=p /(-q)$. Students are able to: - multiply and divide signed numbers. - use long division to convert a rational number to a decimal. Learning Goal 3: Multiply and divide signed numbers, including rational numbers, and interpret the products and quotients using real-world contexts. Learning Goal 4: Convert a rational number to a decimal using long division and explain why the decimal is either a terminating or repeating decimal.	
5\|Page Key:	Major Clusters \| Sup	\| Additional Clusters	* Benchmarked Standard

- 7.NS.A.3. Solve real-world and mathematical problems involving the four operations with rational numbers.
- 7.NS.A.2. Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.
7.NS.A.2c. Apply properties of operations as strategies to multiply and divide rational numbers.

MP. 1 Make sense of problems and persevere in solving them. MP. 2 Reason abstractly and quantitatively.
MP. 4 Model with mathematics.
MP. 5 Use appropriate tools strategically. MP. 6 Attend to precision.

Concept(s):

- The process for multiplying and dividing fractions extends to multiplying and dividing rational numbers.
Students are able to:
- add and subtract rational numbers.
- multiply and divide rational numbers using the properties of operations.
- apply the convention of order of operations to add, subtract, multiply and divide rational numbers.
- solve real world problems involving the four operations with rational numbers.

Learning Goal 5: Apply properties of operations as strategies to add, subtract, multiply, and divide rational numbers.
Learning Goal 6: Solve mathematical and real-world problems involving addition, subtraction, multiplication, and division of signed rational numbers
6|Page Key: Major Clusters | Supporting | Additional Clusters | * Benchmarked Standard

- 7.EE.A.1. Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
- 7.EE.A.2. Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, $a+$ $0.05 a=1.05 a$ means that "increase by 5% " is the same as "multiply by 1.05.".

MP. 2 Reason abstractly and	Concept(s): quantitatively.
MP. 7 Look for and make use of	\quadRewriting an expression in different forms in a problem context can shed light on the problem.

Concept(s): the problem.
Students are able to:

- add and subtract linear expressions having rational coefficients, using properties of operations.
- factor and expand linear expressions having rational coefficients, using properties of operations.
- write expressions in equivalent forms to shed light on the problem and interpret the relationship between the quantities in the context of the problem.

Learning Goal 7: Apply the properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
Learning Goal 8: Rewrite algebraic expressions in equivalent forms to highlight how the quantities in it are related.

Fairfield Township School - Year-Long Curricular Framework Mathematics - Grade 7

Vocabulary		Instruction and Pacing	
Rational Number Irrational number Absolute Value Terminating decimal Repeating Decimal Integer Improper Fraction Mixed Number Divisor Opposite	Additive Inverse Linear Expression Factor Coefficient Variable Substitute	Pretest	1 day
		Adding and subtracting decimals	1 week
		Multiplying decimals	1 week
		Dividing decimals	1 week
		Understanding integers	1 week
		Adding and subtracting integers	1 week
		Multiplying and dividing integers	1 week
		Adding and subtracting fractions and mixed numbers	1 week
		Multiplying and dividing fractions and mixed numbers	1 week
		Expressions	1 week

ENDURING UNDERSTANDING

- Negative numbers are used to represent quantities that are less than zero such as temperatures, scores in games or sports, and loss of income in business.
- Absolute value is useful in ordering and graphing positive and negative numbers.
- Computation with positive and negative numbers is often necessary to determine relationships between quantities.
- Models, diagrams, manipulatives and patterns are useful in developing and remembering algorithms for computing with positive and negative numbers.
- Properties of real numbers hold for all rational numbers.
- Positive and negative numbers are often used to solve problems in everyday life.
- Variables are used to represent quantities in real-world or mathematical problems
- Equivalent expressions demonstrate a relationship between quantities

ESSENTIAL QUESTIONS

- When are negative numbers used and why are they important?
- What strategies are most useful in helping me develop algorithms (steps) for computing with rational numbers?
- What properties will help me simplify and evaluate rational numbers?
- How can rational numbers be applied to solve real-world situations?
- Why would negative numbers be used in expressions?
- Why would a variable represent a rational number?

[^0]- Provide graphic organizers
- Provide additional examples and opportunities for additional problems for repetition
- Provide tutoring opportunities
- Provide retesting opportunities after remediation (up to teacher and district discretion)
- Teach for mastery not test
- Teaching concepts in different modalities
- Adjust pace and homework assignments

Fairfield Township School recognizes the importance of the varying methodologies that may be successfully employed by teachers within the classroom and, as a result, identifies a wide variety of possible instructional strategies that may be used effectively to support student achievement. These may include, but not be limited to, strategies that fall into categories identified by the Framework for Teaching by Charlotte Danielson:

- Communicating with students
- Using questioning and discussion techniques
- Engaging students in learning
- Using assessment in instruction
- Demonstrating Flexibility and Responsiveness

Common Misconceptions		Proper Conceptions
Multiplying 2 negatives make a negative.	Multiplying 2 negatives make a positive.	
Multiplying proper fractions create larger numbers.	Multiplying proper fractions create smaller numbers.	
When multiplying decimals, they must line up the decimal.	When multiplying decimals, they needn't must line up the decimal.	
Performance Task		
The following 5 candidates ran for class president; the table shows what fraction of the votes each candidate received;		
Name	Fraction of votes	Number of votes
mike	$1 / 5$	
Lamont	$2 / 15$	$1 / 3$
Natalia	$1 / 4$	
Dina		

9|Page Key: Major Clusters | Supporting | Additional Clusters | * Benchmarked Standard

Tanya ?

- Of the students who voted, what fraction did NOT vote for Lamont?
- What is the sum of the 4 fractions shown in the table?
- What will the five fractions for the five candidates add up to? Why?
- What fraction of the voters voted for Tanya?
- Suppose 600 students voted. Fill in the last column of the table to show how many votes each candidate received.Rubric: When used as a quiz grade (based on 100\%) each bullet would be worth 20 points for a correct answer, with the last bullet being worth 4 points for each correct number of votes.

Unit 2 Grade 7 - Equations and Ratios and Proportions		
Content Standards	Suggested Standards for Mathematical Practice	Transfer
- 7.EE.B.3. Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making $\$ 25$ an hour gets a 10% raise, she will make an additional $1 / 10$ of her salary an hour, or $\$ 2.50$, for a new salary of $\$ 27.50$. If you want to place a towel bar 9 3/4 inches long in the center of a door that is $271 / 2$ inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.	MP. 1 Make sense of problems and persevere in solving them. MP. 2 Reason abstractly and quantitatively. MP. 3 Construct viable arguments \& critique the reasoning of others. MP. 4 Model with mathematics. MP. 5 Use appropriate tools strategically. MP. 6 Attend to precision.	Concept(s): - Rational numbers can take different forms. Students are able to: - solve multi-step real-life problems using rational numbers in any form. - solve multi-step mathematical problems using rational numbers in any form. - convert between decimals and fractions and apply properties of operations when calculating with rational numbers. - estimate to determine the reasonableness of answers. Learning Goal 1: Solve multi-step real life and mathematical problems with rational numbers in any form (fractions, decimals) by applying properties of operations and converting rational numbers between forms as needed. Assess the reasonableness of answers using mental computation and estimation strategies.
- 7.EE.B.4. Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities . 7.EE.B.4a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+$ $q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms	MP. 1 Make sense of problems and persevere in solving them. MP. 2 Reason abstractly and quantitatively. MP. 3 Construct viable arguments \& critique the reasoning of others. MP. 4 Model with mathematics. MP. 5 Use appropriate tools strategically. MP. 6 Attend to precision. MP. 7 Look for and make use of structure.	Concept(s): No new concept(s) introduced Students are able to: - compare an arithmetic solution to a word problem to the algebraic solution of the word problem, identifying the sequence of operations in each solution. - write an equation of the form $p x+q=r$ or $p(x+q)=r$ in order to solve a word problem. - fluently solve equations of the form $p x+q=r$ and $p(x+q)=r$. - write an inequality of the form $p x+q>r, p x+q<r, p x+q \geq r$ or $p x+q \leq r$ to solve a word problem. - graph the solution set of the inequality. - interpret the solution to an inequality in the context of the problem.

11 | Page
Key:
Major Clusters | Supporting |
Additional Clusters

* Benchmarked Standard

fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm . Its length is 6 cm . What is its width? 7.EE.B.4b. Solve word problems leading to inequalities of the form $p x+q$ $>r$ or $p x+q<r$, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid \$50 per week plus $\$ 3$ per sale. This week you want your pay to be at least $\$ 100$. Write an inequality for the number of sales you need to make, and describe the solutions. *(benchmarked)		Learning Goal 2: Use variables to represent quantities in a real-world or mathematical problem by constructing simple equations and inequalities to represent problems. Learning Goal 3: Fluently solve equations; solve inequalities, graph the solution set of the inequality and interpret the solutions in the context of the problem (Equations of the form $p x+q=r$ and $p(x+q)=r$ and inequalities of the form $p x+$ $q>r, p x+q \geq r, p x+q \leq r$, or $p x+q<r$, where p, q, and r are specific rational numbers).
- 7.RP.A.1. Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks $1 / 2$ mile in each 1/4 hour, compute the unit rate as the complex fraction $\frac{1 / 2}{1 / 4} \mathrm{mph}$, equivalently 2 mph .	MP. 2 Reason abstractly and quantitatively. MP. 4 Model with mathematics. MP. 6 Attend to precision.	Concept(s): No new concept(s) introduced Students are able to: - compute unit rates with ratios of fractions. - compute unit rates with ratios of fractions representing measurement quantities. in both like and different units of measure. Learning Goal 4: Calculate and interpret unit rates of various quantities involving ratios of fractions that contain like and different units.
- 7.RP.A.2. Recognize and represent proportional relationships between	MP. 1 Make sense of problems and persevere in solving them.	Concept(s): - Proportions represent equality between two ratios.

[^1]quantities.
7.RP.A.2a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.
7.RP.A.2b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.
7.RP.A.2c. Represent proportional relationships by equations.
For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $t=p n$.
7.RP.A.2d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.

- 7.RP.A.3. Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease,

MP. 2 Reason abstractly and quantitatively.

MP. 3 Construct viable arguments \& critique the reasoning of others. MP. 4 Model with mathematics. MP. 5 Use appropriate tools strategically.
MP. 6 Attend to precision.
MP. 7 Look for and make use of structure.
MP. 8 Look for and express regularity in repeated reasoning.

MP. 1 Make sense of problems and persevere in solving them. MP. 2 Reason abstractly and quantitatively.
MP. 4 Model with mathematics.
MP. 5 Use appropriate tools strategically.

- Constant of proportionality

Students are able to:

- use tables and graphs to determine if two quantities are in a proportional relationship.
- identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.
- write equations representing proportional relationships.
- Interpret the origin and $(1, r)$ on the graph of a proportional relationship in context.
- interpret a point on the graph of a proportional relationship in context.

Learning Goal 5: Determine if a proportional relationship exists between two quantities e.g. by testing for equivalent ratios in a table or graph on the coordinate plane and observing whether the graph is a straight line through the origin.
Learning Goal 6: Identify the constant of proportionality (unit rate) from tables, graphs, equations, diagrams, and verbal descriptions.
Learning Goal 7: Write equations to model proportional relationships in real world problems.
Learning Goal 8: Use the graph of a proportional relationship to interpret the meaning of any point (x, y) on the graph in terms of the situation - including the points $(0,0)$ and $(1, r)$, recognizing that r is the unit rate.

13|Page Key: Major Clusters | Supporting | Additional Clusters | * Benchmarked Standard

Fairfield Township School - Year-Long Curricular Framework Mathematics - Grade 7

Fairfield Township School - Year-Long Curricular Framework Mathematics - Grade 7

ENDURING UNDERSTANDING

ESSENTIAL QUESTIONS

- Variables are used to represent quantities in real-world or mathematical problems
- Proportional relationships express how quantities change in relationship to each other
- Why would negative numbers be used in equations?
- Why would a variable represent a rational number?
- How can equations be used in real-world contexts?
- When are ratios and proportions used and why are they important?
- When and why do I use proportional comparisons?

Differentiation and Accommodations

- Provide graphic organizers
- Provide additional examples and opportunities for additional problems for repetition

District/School Primary and Supplementary Resources

- Provide tutoring opportunities
- Provide retesting opportunities after remediation (up to teacher and district discretion)
- Teach for mastery not test
- Teaching concepts in different modalities
- Adjust pace and homework assignments

15 Page Key: Major Clusters \| Supporting | Additional Clusters | * Benchmarked Standard

Instructional Strategies

Fairfield Township School recognizes the importance of the varying methodologies that may be successfully employed by teachers within the classroom and, as a result, identifies a wide variety of possible instructional strategies that may be used effectively to support student achievement. These may include, but not be limited to, strategies that fall into categories identified by the Framework for Teaching by Charlotte Danielson:

- Communicating with students
- Using questioning and discussion techniques
- Engaging students in learning
- Using assessment in instruction
- Demonstrating Flexibility and Responsiveness

Common Misconceptions	Proper Conceptions
When using the "inverse" to solve an equation, students eliminate the variable	The "inverse" is used to eliminate the number from one side of an equation
Using a "cross-product" to solve a proportion means multiply straight across (like multiplying fractions)	Cross-products are multiplying proportions diagonally, like an " X " Sales tax (and other \%) are often deducted from an amount amounts

Performance Tasks				
A) Abigail has \$400 in her savings account. She wants to keep at least \$160 in the account. She withdraws \$40 each week for food.				
P art 1) Write an inequality that you could use to find out how many weeks she can make withdraws from the account				
Part 2) Solve the inequality, showing your work, and determine how many weeks she can make withdraws from the account				
Part 3) Draw a number line and graph the inequality				
Rubric: 1 point for each correct bullet				
B) A map uses a scale of $\mathbf{1}$ inch = $\mathbf{2 0}$ miles. Cindy measured the distance from her house to several popular amusement parks nearby. Set up a proportion for each destination to determine how many miles it is from her house, and solve each proportion.				
To Six Flags, Cindy measured 5.5 inches:				
To Hershey Park, Cindy measured $73 / 4$ inches:				
To Morey's Pier, Cindy Measured 1 1/10 inches:				
Rubric: One point for each correct answer				

- 7.SP.A.2. Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. For example, estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.
- 7.SP.B.3. Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability.
example, the mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability (mean absolute deviation) on either team; on a dot plot, the separation between the two distributions of heights is noticeable.
- 7.SP.B.4. Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. For example, decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a

MP. 1 Make sense of problems and

 persevere in solving them.MP. 2 Reason abstractly and quantitatively.
MP. 3 Construct viable arguments \& critique the reasoning of others. MP. 4 Model with mathematics. MP. 6 Attend to precision.

Concept(s):

- Inferences can be drawn from random sampling.

Students are able to:

- analyze data from a sample to draw inferences about the population.
- generate multiple random samples of the same size.
- analyze the variation in multiple random samples of the same size.

Learning Goal 2: Use random sampling to produce a representative sample. Learning Goal 3: Develop inferences about a population using data from a random sample and assess the variation in estimates after generating multiple samples of the same size.

Concept(s): No new concepts introduced
Students are able to:

- locate, approximately, the measure of center (mean or median) of a distribution
- visually assess, given a distribution, the measure of spread (mean absolute deviation or inter-quartile range).
- visually compare two numerical data distributions and describe the degree of overlap.
- measure or approximate the difference between the measures centers and express it as a multiple of a measure of variability.

Learning Goal 4: Visually compare the means of two distributions that have similar variability; express the difference between the centers as a multiple of a measure of variability.

Concept(s): No new concept(s) introduced
Students are able to:

- using measures of center, draw informal inferences about two populations and compare the inferences.
- using measures of variability, draw informal inferences about two populations and compare the inferences.

Learning Goal 5: Draw informal comparative inferences about two populations using their measures of center and measures of variability.

19|Page Key: persevere in solving them. MP. 2 Reason abstractly and quantitatively. MP. 3 Construct viable arguments \& critique the reasoning of others. MP. 4 Model with mathematics. MP. 5 Use appropriate tools strategically.

MP. 3 Construct viable arguments \& critique the reasoning of others. MP. 1 Make sense of problems and persevere in solving them. MP. 2 Reason abstractly and quantitatively.
MP. 4 Model with mathematics. MP. 5 Use appropriate tools strategically.
MP. 6 Attend to precision. MP. 7 Look for and make use of structure.

chapter of a fourth-grade science book.	MP. 6 Attend to precision.	
- 7.SP.C.5. Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.	MP. 4 Model with mathematics. MP. 5 Use appropriate tools strategically. MP. 6 Attend to precision. MP. 7 Look for and make use of structure.	Concept(s): - Probability of a chance event is a number between 0 and 1 . - Probability expresses the likelihood of the event occurring. - Larger probability indicates greater likelihood. Students are able to: - draw conclusions about the likelihood of events given their probability. Learning Goal 6: Interpret and express the likelihood of a chance event as a number between 0 and 1 , relating that the probability of an unlikely event happening is near 0 , a likely event is near 1 , and $1 / 2$ is neither likely nor unlikely.
- 7.SP.C.6. Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.	MP. 2 Reason abstractly and quantitatively. MP. 1 Make sense of problems and persevere in solving them. MP. 3 Construct viable arguments \& critique the reasoning of others. MP. 4 Model with mathematics. MP. 5 Use appropriate tools strategically.	Concept(s): - Relative frequency - Experimental probability - Theoretical probability Students are able to: - collect data on chance processes, noting the long-run relative frequency. - predict the approximate relative frequency given the theoretical probability. Learning Goal 7: Approximate the probability of a chance event by collecting data and observing long-run relative frequency; predict the approximate relative frequency given the probability
- 7.SP.C.7. Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. 7.SP.C.7a. Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a	MP. 1 Make sense of problems and persevere in solving them. MP. 2 Reason abstractly and quantitatively. MP. 4 Model with mathematics. MP. 6 Attend to precision.	Concept(s): - Uniform (equally likely) and non-uniform probability models Students are able to: - develop a uniform probability model. - use a uniform probability model to determine the probabilities of events. - develop (non-uniform) probability models by observing frequencies in data that has been generated from a chance process. Learning Goal 8: Develop a uniform probability model by assigning equal probability to all outcomes; develop probability models by observing frequencies and use the models to determine probabilities of events; compare probabilities from a model to observed frequencies and explain sources of discrepancy when agreement is not good

20|Page Key:
Major Clusters | Supporting |
Additional Clusters

* Benchmarked Standard
student is selected at random
from a class, find the
probability that Jane will be
selected and the probability
that a girl will be selected.
7.SP.C.7b. . Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process.
For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?
- 7.SP.C.8. Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.
7.SP.C.8a. Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.
7.SP.C.8b. Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in the sample space which compose the

Fairfield Township School - Year-Long Curricular Framework Mathematics - Grade 7

	event. 7.SP.C.8c. Design and use a simulation to generate frequencies for compound events. For example, use random digits as a simulation tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that it will take at least 4 donors to find one with type A blood?			
	District/School Formative Assessment Plan		District/School Summative Assessment Plan	
	- Teacher-Created Assessments - Homework - Classwork - UDL's - whiteboard activities - IXL - Problem of the Day - Exit Ticket		- Chapter Tests - Unit Tests - EdConnect Assessments	
	Focus Mathematical Concepts			
	Vocabulary		Instruction and Pacing	
	Sampling representative samp Random sampling inferences Survey variation/variability		Pretest	1 day
			Populations	1 week
			Mean, median, mode, range	1 week
			Stem and leaf plots	1 week
			Box and whisker plots	1 week
			Probability vs odds	1 week

[^2]Fairfield Township School - Year-Long Curricular Framework Mathematics - Grade 7

Population Mean,median,mode,range Stem and leaf plots Probability Events Compound events Outcome	distribution	Compound events	1 week
	measures of center	Mean Absolute Deviation	2 weeks
	sample spaces	Tree diagrams	1 week
	Mean absolute deviation		

ENDURING UNDERSTANDING

- Data change, in various contexts, both quantitative and qualitative can be identified and analyzed
- Patterns in data can provide insight into potential relationships
- The probability of an event's occurrence can be predicted with varying degrees of confidence

ESSENTIAL QUESTIONS

- How do I describe a pattern in data?
- How can the relationship between quantities be represented?
- How can change be expressed quantitatively?

Differentiation and Accommodations

- Provide graphic organizers
- Provide additional examples and opportunities for additional problems for repetition
- Provide tutoring opportunities
- Provide retesting opportunities after remediation (up to teacher and district discretion)
- Teach for mastery not test
- Teaching concepts in different modalities
- Adjust pace and homework assignments

Instructional Strategies

Fairfield Township School recognizes the importance of the varying methodologies that may be successfully employed by teachers within the classroom and, as a result, identifies a wide variety of possible instructional strategies that may be used effectively to support student achievement. These may include, but not be limited to strategies that fall into categories identified by the Framework for Teaching by Charlotte Danielson:

- Communicating with students
$23 \mid$ Page Key: Major Clusters \| Supporting | Additional Clusters | * Benchmarked Standard

- Using questioning and discussion techniques - Engaging students in learning - Using assessment in instruction - Demonstrating Flexibility and Responsiveness	
Common Misconceptions	Proper Conceptions
When collecting data, any random sampling of a population will result in a valid collection of data	A sample is valid only if the sample is a true representation of the population
Students often mistake probability and odds	Probability is the favorable outcome of the total changes, while odds uses the "chances against"
Using compound probability, the denominator stays the same when you don't replace the item (you pull a sock out of 7 socks, the next pull is out of 6 socks)	Using compound probability, the denominator changes when you don't replace the item
Performance Task	
Tanya has a box full of marbles of which 13 are blue, 9 are purple, and $\mathbf{2 0}$ are red. She pulls one marble out of the box with out looking. What is the probability, in Percent form, of pulling each color out of the box?	
P (blue) __ $\quad P$ (purple)__ $\quad P($ red $)$	
Rubric: 1 point for each correct percentage	

Unit 4 Grade 7-Geometry		
Content Standards	Suggested Standards for Mathematical Practice	Transfer
$\bullet \quad$7.G.B.4: Know the formulas for the area and circumference of a circle	MP.1 Make sense of problems and persevere in solving them.	Concept(s): $\bullet \quad$ Circumference

24 Page Key: Major Clusters | Supporting | Additional Clusters I * Benchmarked Standard
and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.

- 7.G.B.5. Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.
- 7.EE.B.4. Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
7.EE.B.4a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently.
- 7.G.B.6. Solve real-world and mathematical problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.

MP. 2 Reason abstractly and quantitatively.

MP. 3 Construct viable arguments \& critique the reasoning of others. MP. 4 Model with mathematics. MP. 5 Use appropriate tools strategically.
MP. 6 Attend to precision.
MP. 7 Look for and make use of structure.
MP. 8 Look for and express regularity in repeated reasoning.
MP. 3 Construct viable arguments \& critique the reasoning of others. MP. 4 Model with mathematics. MP. 5 Use appropriate tools strategically.
MP. 6 Attend to precision. MP. 7 Look for and make use of structure.

Students are able to:

- solve problems by finding the area and circumference of circles.
- show that the area of a circle can be derived from the circumference.

Learning Goal 1: Know the formulas for the area and circumference of a circle and use them to solve problems. Give an informal derivation of the relationship between the circumference and area of a circle.

Concept(s): No new concept(s) introduced

Students are able to:

- use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations.
- solve mathematical problems by writing and solving simple algebraic equations based on the relationships between and properties of angles (supplementary, complementary, vertical, and adjacent.
Learning Goal 2: Write and solve simple multi-step algebraic equations involving supplementary, complementary, vertical, and adjacent angles.

MP. 1 Make sense of problems and persevere in solving them. MP. 2 Reason abstractly and quantitatively.
MP. 3 Construct viable arguments \& critique the reasoning of others. MP. 4 Model with mathematics.

Concept(s): No new concept(s) introduced

Students are able to:

- solve real-world and mathematical problems involving area of two dimensional objects composed of triangles, quadrilaterals, and polygons.
- solve real-world and mathematical problems involving volume of three dimensional objects composed of cubes and right prisms.
- solve real-world and mathematical problems involving surface area of three-

	MP. 5 Use appropriate tools strategically. MP. 6 Attend to precision. MP. 7 Look for and make use of structure.	dimensional objects composed of cubes and right prisms. Learning Goal 3: Solve real-world and mathematical problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.
- 7.G.A.2. Draw (with technology, with ruler and protractor as well as freehand) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle	MP. 3 Construct viable arguments \& critique the reasoning of others. MP. 5 Use appropriate tools strategically. MP. 6 Attend to precision. MP. 7 Look for and make use of structure.	Concept(s): - Conditions for unique triangles, more than one triangle, and no triangle. Students are able to: - draw geometric shapes with given conditions, including constructing triangles from three measures of angles or sides. - recognize conditions determining a unique triangle, more than one triangle, or no triangle. Learning Goal 4: Use freehand, mechanical (i.e. ruler, protractor) and technological tools to draw geometric shapes with given conditions (e.g. scale factor), focusing on constructing triangles.
- 7.G.A.3. Describe the twodimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.	MP. 5 Use appropriate tools strategically. MP. 6 Attend to precision. MP. 7 Look for and make use of structure.	Concept(s): - Cross-sections of three-dimensional objects Students are able to: - analyze three dimensional shapes (right rectangular pyramids and prisms) by examining and describing all of the 2-dimensional figures that result from slicing it at various angles. Learning Goal 5: Describe all of the 2-dimensional figures that result when a 3dimemsional figures are sliced from multiple angles.
- 7.EE.B.4. Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. 7.EE.B.4a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic	MP. 2 Reason abstractly and quantitatively. MP. 4 Model with mathematics. MP. 6 Attend to precision. MP. 7 Look for and make use of structure.	Concept(s): No new concept(s) introduced Students are able to: - write an equation of the form $p x+q=r$ or $p(x+q)=r$ in order to solve a word problem. - fluently solve equations of the form $p x+q=r$ and $p(x+q)=r$. Learning Goal 6: Fluently solve simple equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers.
26\|Page Key:	Major Clusters \| Support	Additional Clusters । * Benchmarked Standard

solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm . Its length is 6 cm . What is its width? *(benchmarked)			
- 7.RP.A.3. Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error *(benchmarked)	MP. 1 Make sense of problems and persevere in solving them. MP. 2 Reason abstractly and quantitatively. MP. 4 Model with mathematics. MP. 5 Use appropriate tools strategically. MP. 6 Attend to precision. MP. 7 Look for and make use of structure.	Concept(s): - Recognize percent as a ratio indicating the Students are able to: - use proportions to solve multistep percent tax, markups, discounts, gratuities, commi percent decrease, percent error. - use proportions to solve multistep ratio prob Learning Goal 7: Solve multi-step ratio and percent relationships (simple interest, tax, gratuities and commissions, fees, percent error).	quantity roblems in ions, fees, lems. roblems us markups and rcent incr
District/School Form	tive Assessment Plan	District/School Summative	Assessment
- Teacher-Created Assessments - Homework - Classwork - UDL's - whiteboard activities - IXL - Problem of the Day - Exit Ticket		- Chapter Tests - Unit Tests - EdConnect Assessments	
Focus Mathematical Concepts			
Vocabulary		Instruction and Pacing	
		Pretest	1 day
		Angles (supplementary, complementary, vertical, adjacent)	2 weeks
$27 \mid$ Page Key:	Major Clusters \| Supporting	Additional Clusters \| * Benchmarked Standard	

Fairfield Township School - Year-Long Curricular Framework Mathematics - Grade 7

Area	supplementary	2-D figures (area perimeter)	1 week
Volume	complementary	3-D figures (area, surface area, volume)	2 weeks
Surface area	vertical	2-D figures sliced from 3-D figures	2 weeks
2-D and 3-D figures	adjacent	Circles	1 week
Triangle	circumference	Review of equations, inequalities, ratios,	1 week
Polygon	diameter	proportions	
Cube			
Right prism			

ENDURING UNDERSTANDING

- 2-D and 3-D figures are different
- Formulas for finding area, volume, surface area are related to algebra equations

ESSENTIAL QUESTIONS

- How do you describe geometric shapes, such a triangles?
- How do you find the area of a 2-d figure?
- How do you find the volume of a 3-d figure?

Fairfield Township School recognizes the importance of the varying methodologies that may be successfully employed by teachers within the classroom and, as a result, identifies a wide variety of possible instructional strategies that may be used effectively to support student achievement. These may include, but not be limited to, strategies that fall into categories identified by the Framework for Teaching by Charlotte Danielson:

- Communicating with students

28|Page Key: Major Clusters | Supporting | Additional Clusters I * Benchmarked Standard

- Using questioning and discussion techniques - Engaging students in learning - Using assessment in instruction - Demonstrating Flexibility and Responsiveness	
Common Misconceptions	Proper Conceptions
Area and volume are found the same way for all figures	There are different formulas for different measurements and figures
Pi i exactly 3.14	Pi i i irrational
Performance Task	
Huong covered the box to the right with sticky-backed decorating paper.	
The paper costs 3¢ per square inch.	
Part 1) Find the surface area of the box.	
Part 2) How much money will Huong need to spend on decorating paper?	
Part 3) If he Huong has $\mathbf{\$ 1 0}$, will he have enough money to pay for the paper, and if so, how much change will he get back?	
Solution:	
The surface area can be found by using the dimensions of each face to	
find the area and multiplying by 2 :	
Front: 7 in. $\times 9$ in. $=63$ in2 $\times 2=126$ in2	
Top: 3 in. $\times 7$ in. $=21$ in2 $\times 2=42 \mathrm{in} 2$	
Side: 3 in. $\times 9$ in. $=27$ in2 $\times 2=54$ in2	
The surface area is the sum of these areas, or 222 in 2 . If each square inch of paper cost $\$ 0.03$, the cost would be	
\$6.66.	h part.

29|Page Key: Major Clusters | Supporting | Additional Clusters | * Benchmarked Standard

Fairfield Township School - Year-Long Curricular Framework Mathematics - Grade 7

[^0]: 8 |Page
 Key: Major Clusters | Supporting |
 Additional Clusters । *Benchmarked Standard

[^1]: 12|Page Key: Major Clusters | Supporting | Additional Clusters | * Benchmarked Standard

[^2]: 22 |Page
 Key: Major Clusters |
 Supporting |
 Additional Clusters । *Benchmarked Standard

